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Abstract

For decades, the growth and volume of digital data collection has made it challenging
to digest large volumes of information and extract underlying structure. Coined ‘Big
Data’, massive amounts of information has quite often been gathered inconsistently
(e.g from many sources, of various forms, at different rates, etc.). These factors
impede the practices of not only processing data, but also analyzing and displaying
it in an efficient manner to the user. Many efforts have been completed in the data
mining and visual analytics community to create effective ways to further improve
analysis and achieve the knowledge desired for better understanding. Our approach
for improved big data visual analytics is two-fold, focusing on both visualization and
interaction. Given geo-tagged information, we are exploring the benefits of visualizing
datasets in the original geospatial domain by utilizing a virtual reality platform. After
running proven analytics on the data, we intend to represent the information in a more
realistic 3D setting, where analysts can achieve an enhanced situational awareness and
rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition,
developing a human-computer interface that responds to natural user actions and
inputs creates a more intuitive environment. Tasks can be performed to manipulate
the dataset and allow users to dive deeper upon request, adhering to desired demands
and intentions. Due to the volume and popularity of social media, we developed a 3D
tool visualizing Twitter on MIT’s campus for analysis. Utilizing emerging technologies
of today to create a fully immersive tool that promotes visualization and interaction
can help ease the process of understanding and representing big data.

Thesis Supervisor: Vincent W. S. Chan
Title: Professor of EECS and Aeronautics and Astronautics

Thesis Supervisor: Jeremy Kepner
Title: MIT Lincoln Laboratory Fellow
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Chapter 1

Introduction

1.1 Motivation

Data is growing ever so fast and requires constant upkeeping. According to a 2011

review by Mckinsey[48], the number of analysts and managers required to fully exploit

Big Data analysis is growing rapidly (e.g. approximately 190,000 analysts with “deep-

analytical" experience and 1.5 million managers collectively). The desire to gain a

sense of intuition on data through analysis is essential to the understanding and

promotion of success for one’s business. Determining an underlying structure that

best describes the flow of data could uncover hidden connections and patterns that

could enhance the knowledge of a network and its users. Many techniques are being

utilized to analyze Big Data, however, visualization is one that can very effectively

communicate insightful findings.

The gaming industry can be viewed as a medium that has propelled the devel-

opment of computer graphics and visualization forward. Effective simulations need

to incorporate realtime responses and realistic aesthetics to convey meaningful ex-

periences. Games combine both technical prowess and creative ability to produce

applications for entertainment, education, training, etc. I have always been an avid

gamer and a promoter of gamification. Creating a unique user experience that helps

drive insight and discovery is an awe-inspiring pursuit.

My appreciation can be further expressed in my readings of Ready Player One[30]
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and Ender’s Game[62]. These works realize the concept of immersive environments

that can be manipulated by the user’s finger tips to complete specific tasks. I am a

strong proponent of Human-Computer Interaction (HCI) because this field of study

attempts to bridge the gap between people and technology, designing solutions with

the user in mind. For example, as users attempt to retain and categorize new infor-

mation, they add to their cognitive overload by spatially positioning these abstract

elements in their head. This can potentially be mitigated through the use of emerging

technologies and conveying the same information in a 3D interface that is overlaid

in a natural or simulated environment. Tony Stark from Iron Man 2 [36] and Tom

Cruise in Minority Report [64] rely on tools utilizing gesture and image recognition

to dictate how they want to view their surroundings. Collectively bringing all these

digital events into a physical reality is an astonishing feat.

Technologies are growing and performing more efficiently as characterized by

Moore’s Law[54]. Recently, Virtual Reality (VR) and Augmented Reality (AR) has

become a booming industry on the rise these past few years. Ever since the Kickstarter

campaign of Oculus Rift in 2012[59], visionaries want to bring virtual experiences to

the commercial market and consumers. The goal is to leverage these technologies to

enhance and create a realistic environment that further benefits the human condition.

“Seeing is Believing”

Humans rely on perception to aid in their belief that something is real[51]. Vi-

sualization and appealing to how one perceives their environment can help enhance

situational awareness and decision making skills. If the visual representation is con-

vincing enough, this process can also drive user interaction. An interaction technique

is the fusion of all the technological components that represent input and output, and

provides a way for the user to accomplish a task[68]. Combining design principles of

the user interface with the user experience that better relates to the natural 3D world

can yield promising results.

As part of the research and development community at MIT Lincoln Laboratory, I

am bringing my insights in Human-Computer Interaction and visualization to attempt
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to solve a challenging problem. The goal of this thesis is to not only apply visual

analytics to Big Data, but to do so in a convincing way that promotes a better

understanding of the data network and stimulates user interaction.

1.2 Background

1.2.1 Big Data

“We are in The Age of Big Data” .

Lohr[47] expresses that information is continuing to accumulate and is being col-

lected at an increasing rate. As of 2012, about 2.5 exabytes of data are created each

day [61]. Today, big data can be used to convey different concepts such as social me-

dia, marketing, financial services, advertising, etc[61]. Much information can be used

to characterize particular analytical models in practice; however, this massive intake

of information can commonly be unstructured and overly complex. In fact, the main

principles that govern Big Data include volume, velocity, variety and veracity[50].

These prime factors make it difficult to easily detect patterns and get an overall sense

of the data’s architecture.

Volume - unprecedented growth of data intake and storage. Many sources of

information exist, resulting in data ingests of massive amounts.

Velocity - speed of data creation and the rate in which it is processed. Determin-

ing how data continually flows effects how it can be further monitored.

Variety - diverse, and often unstructured, forms that data acquires. New tech-

niques in organization and representation is needed to simplify complexity.

Veracity - resilience and confidence of data to determine its overall utility. The

more consistent the data, the more reliable it is for decision making.

According to Marr[49], another aspect to consider is value. We want to ensure the

findings obtained from the analysis are insightful and meaningful. In addition, we
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want to leverage findings for practical applications. Today’s challenges are to develop

meaningful tools for analysts and users to understand data in a more convincing way.

There are many ways we can attempt to find insight. These often consist of data

mining, machine learning, and optimization algorithms that draw in statistics and

computer science. Applying visualization is an important technique that’s used to

effectively communicate, understand, and improve the results of big data analyses.

1.2.2 Visual Analytics

Visualization plays a key role in exploring and understanding large datasets. Visual

analytics is the science of analytical reasoning assisted by interactive user interfaces[67].

According to Keim[40], there is much to gain when data is represented in a more visual

way. This capability will enable quicker time to insight and more direct interactions

with information. Big Data may contain certain anomalies and abstract features that

are not so easily recognizable. The goal of performing analytics is to uncover these

underlying patterns and display it to the user effectively. This exploration process

of Big Data can be improved by integrating human intuition and perception. Hence,

the key concept of effective data visualization is to represent congested and complex

data in a way that is more manageable for the user.

One strategy is to combine visual analytics with known geographical represen-

tations called Geovisual Analytics (GVA). GVA describes the use of visuals with

map-based interfaces to further support the understanding of information [38]. The

motive for GVA is to get a better sense of large datasets by having a contoured ter-

rain in the background to help guide exploration and analysis. As a result, users

gain an additional sense of situational awareness by making comparisons and connec-

tions with their surroundings. Geovisual Analytics is also very helpful in determining

patterns that may be better depicted when data can be geographically distributed.
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1.2.3 Virtual Reality

There have been many approaches of using virtual reality as a visualization platform.

VR can be subdivided into a few different techniques. Overall, the goal is to promote

full immersion in which a simulated environment surrounds the user. One technique

is to have an immersive room with many panels or screens on the walls. Images

are projected on these walls, which usually covers all of the user’s peripherals. One

example of this is “The Cave"[31], which has developed many practical applications.

This platform has been utilized for data visualization, geographical exploration, and

more gameplay situations. Another less immersive but more focalized form of vir-

tual reality is the responsive workbench[44]. The workbench operates by projecting

computer-generated stereoscopic images onto a table seen by a group of users. Users

still wear shuttered glasses to get the impression they are viewing objects in 3D.

A noticeable drawback, however, is that the simulation’s field of view is limited by

the sight of the table itself. Most commonly used for VR are Head Mounted Dis-

plays (HMDs). This approach provides a stereoscopic display in which two imaging

screens are rendered for each eye. Ivan Sutherland created the first virtual reality

and augmented reality head mounted displays in the 1960s[65]. However, limitations

in processing power and information loss did not make it as usable and applicable

during that time. However, advances in CPU and GPU performance have made the

virtual reality experience more favorable and sustainable for users. It was not until

1987 when Jaron Lanier coined the term ‘Virtual Reality’[46]. Since then, it has been

experimented with in many diverse practical applications well into the 21st century,

as described in Section 1.3.2.

1.3 Related Work

1.3.1 Social Media and 2D Representations

Social media is a typical use case in the Big Data community due to it’s scope and

familiarity[26]. It provides a suitable foundation to run sample analyses that can
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potentially be used to extract more underlying information about the dataset such

as overall structure, user behaviour, relationships, trending topics, etc. Massively

Parallel Database (MAPD)[10] is one solution for big data querying, visualization

and analysis. MAPD is the product of research being done at the Big Data group at

MIT CSAIL[13]. With the processing of spatial and Geographic Information Systems

(GIS) data, Twitter feeds can be depicted on a large-scale world map. Utilizing a SQL

database, the large collection of tweets from this social media can be easily filtered

and displayed on a 2D map. This system runs on a hybrid architecture of GPUs and

CPUs. MAPD achieves massive parallelism and works well with High Performance

Computing (HPC) clusters. This tweetmap represented as a desktop application

provides additional functionality such as aggregation filters, collective charts, and

query estimations.

TwitterHitter is another Big Data tool that takes advantage of geographic infor-

mation and geovisual analytics. TwitterHitter [72] is a desktop application developed

on the Microsoft .NET framework. This software allows users to access all attributes

of available tweets and match them to a user-defined query. The result is then stored

on a comprehensive database. TwitterHitter allows users to quickly apply spatial

statistics and geographic computational processes on the tweets. The user interface

visually outputs the collected results as a linked map, timeline, or a 2D extended

graph. This visualization can plot tweets pertaining to a single individual or multi-

ple users. In addition, a live stream view can be activated on the map for real-time

analysis. Although MAPD and TwitterHitter are advanced geovisual analytic tools

designed for the depiction of large data sets like Twitter, they still do not address the

challenge of representing complex multidimensional data.

1.3.2 3D Game Engines and Virtual Reality

When working in spatial and geographical domains, simulations and virtual reality

can lead to better discovery. Virtual Reality has made many advances in the realm of

game development, most notable for reproducing realistic first person perspectives[69].

Game engines such as Unity3D[19] are capable of constructing user experiences that
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combine computer graphics, interaction, creativity, etc. all together. They have also

been tested for applying techniques such as situational awareness[39] and information

visualization[43]. Djorgovski[32] and Donalek[34] have shown how VR has extended

from game applications into other areas of research. Some examples of utilizing virtual

reality for scientific study include physics[73], medicine[27], and shape perception[74].

These above works have demonstrated how immersion helps scientists more effectively

investigate and perceive their area of study. Data visualization has shown to support

analyses that are multi-dimensional and highly abstract. According to the MICA

experiment[32], utilizing virtual reality helps visualize and analyze large data in 3D

space. Caltech[34] shows how VR can create a more collaborative and immersive

platform for data visualization. Applying VR technology as a data visualization tool

is an emerging field of research with promising outlooks.

1.4 Thesis Overview

Integrating Visual Analytics into Big Data is a challenging problem with many

caveats. Our approach is to develop a Unity3D application that takes advantage

of geospatial visual analytics of Twitter data at MIT into a virtual reality setting.

Although the related social media work of MAPD and TwitterHitter are sufficient

Twitter geo-analytical tools, they remain two-dimensional, revealing some limitations

in user analytical tasks such as clustering, aggregation, and perception. By embed-

ding catalogued tweets into a 3D geospatial environment, users can more directly

perceive and interact with their data. Also, providing a geographical basis can pro-

vide additional value and context to the dataset.

The remaining portions of this thesis is structured as follows. Chapter 2 describes

the architecture, implementation, and the design of the user interface of our applica-

tion. Chapter 3 discusses the user interaction our application provides; elaborating on

the analytical tasks performed by the user and the narrative this process constructs.

We provide a discussion of our results in Chapter 4. Finally, we conclude and mention

areas of future work in Chapter 5.
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Contributions to the thesis are listed as follows:

• Ingest large datasets that apply high performant analytics

• Visualize data that promotes quicker digestion, ease of manipulation, and fur-

ther transparency

• Experimenting with virtual reality as an effective workspace and data visual-

ization tool

• Enhance the user experience in a virtual reality platform

Finally, the appendix lists additional tables, figures, and references that

complement the material in this thesis.
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Chapter 2

Application

2.1 Architecture Overview

This thesis has integrated many core technologies that have been in development

these recent years. We attempted to combine these commercial technologies with

innovative applications and analytical models developed at MIT Lincoln Laboratory.

2.1.1 Technologies

When planning this project and conceptualizing its design, we fully considered which

emerging technologies and hardware we wanted to utilize. For rapid prototyping, we

preferred equipment that was commercially distributed, readily available, and pro-

vides reliable developer support. We were more inclined to use inexpensive commodity

software\hardware to aid in the development process. After review, we decided to

use the Unity3D Engine with the Oculus Rift headset and Leap Motion controller.

Given the software developments kits (SDKs) with Unity3D integration, we can build

an application that can run on the traditional laptop computer. These devices would

provide the foundation for an immersive and interactive data visualization analytical

tool utilizing a virtual reality platform. Even though most of these technologies are

new with much improvement still to be made for development, they are sufficient for

research and have promising outlooks.
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2.1.1.1 Unity3D Game Engine

This project embedded information from large datasets into the Unity3DTM game

engine[19]. Many reasons demonstrate why Unity3D was the most reliable game

engine to develop on for this research. Unity3D is a fully capable physics engine that

is highly reputable in performance. Many features are readily available for developers

at varying subscriptions. Its flexibility in multi-platform support and scripting makes

it a valid candidate as a modeling and 3D visualization tool. Unity is built off the

.NET framework, where programers can script game components in a 3D scene using

object oriented programming. As described in Section 1.3.2, Unity3D is extending

its capabilities as an effective visualization tool into markets outside of the gaming

industry, such as research and academia. It is also becoming one of the leading

development tools for virtual and augmented reality.

2.1.1.2 Oculus Rift

Head Mounted Displays (HMDs) are wearable devices placed on the head with a dis-

play covering the eyes. This optic is typically stereoscopic where an image is rendered

for each eye. The screen’s placement and orientation relative to the eyes can mask

the majority of the user’s peripherals. This allows the projections and images shown

on the display to be fully immersive. Many key factors are considered to describe the

performance of HMDs. Interpupillary Distance (IPD) measures the distance between

the pupils, which is necessary for determining focus and the overlapping viewing ar-

eas. Field of View (FOV) is the extent of the environment that is observed. Humans

typically have about 180 degrees FOV. Varying the field of view for HMDs will effect

the immersion felt by the user. Resolution of the display specifies the pixel density.

Given the display is already in close proximity to the face, a higher resolution is

preferred to allow for better quality and more realistic simulations.

The Rift is a virtual reality HMD developed by Oculus VR[15]. Since 2012,

the company has been developing the Oculus Rift to be a leading platform for virtual

reality. The device is produced as a secondary display that is tethered to a personal
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computer for processing. They have also made efforts for mobile versions such as

the Samsung Gear VR[17]. For developers, Oculus has released two development

kits. The initial DK1 includes a gyroscope, accelerometer, and magnetometer for

improved rotational tracking. However, limitations such as latency and low resolution

were noticeable and detracted from long term gameplay. The second version revealed

in the DK2 has better screen resolution, reduced latency, and a higher frame rate.

The OLED display has a HD resolution with 1080x1200 pixels per eye and a refresh

rate of 90 Hz. It also has a FOV of roughly 100 degrees. A supplemental Infrared

(IR) sensor aimed at the front of the Rift adds three axiis of freedom for positional

tracking that more accurately monitors head movement. Throughout the duration of

this thesis, we have prototyped on both versions and updated assets in the project

accordingly.

2.1.1.3 Leap Motion

Despite conventional I/O for desktop displays such as the mouse and keyboard, sup-

plemental devices are necessary to help relay user input in VR. When using a HMD

that simulates a 3D setting, the player no longer has full awareness of his or her phys-

ical world in reality. Naturally, the player relies on their senses and interaction with

his or her surroundings in order to correctly navigate the scene and dictate action.

Given this telepresence of “feeling like you are there”, additional mediums that are in

accordance to the player’s simulated environment is much more desired.

“3D Output Meets 3D Input”

The Leap Motion[9] controller attempts to address these concerns. First

launched in 2013, the Leap Motion controller is a USB device designed for hand detec-

tion and gesture recognition. An image is generated from each of the two monochro-

matic IR cameras in the device, representing the live feed of a black and white “speckle

pattern” from the forward-facing infrared LEDs. Using machine vision and applied

depth-mapping algorithms, correspondences can be distinguished from the 2D images
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and 3D positional data can be synthesized. Leap Motion focuses primarily on detect-

ing the body parts within your hand (e.g. palms and fingers), allowing for more fast

and accurate hand tracking. The Leap Motion’s solution for hand tracking is anal-

ogous to the Microsoft’s Kinect[12] for body tracking. Depending on the hardware,

the controller can reach up to approximately 200 FPS. The interaction zone in which

hands are most precisely tracked is about eight cubic feet (and one meter in the cam-

era’s forward direction) with a Field of View of 135-degrees. This is complementary

to the Rift’s FOV mentioned in Section 2.1.1.2. Leap has already begun their journey

creating virtual reality applications and have released easy-to-install VR developer

mounts for HMDs.

2.1.2 Integration

Our goal is to integrate all of these devices into one application to be used for data

visualization and analysis. Development was completed on a Mid 2009 15-inch Mac-

book Pro. All sensory inputs from cameras and USB devices were read directly into

the computer with a powered accessory USB hub. The application binary can directly

output to the Rift display via HDMI. For testing purposes, we still incorporated tra-

ditional input devices such as a mouse and keyboard, but also introduced the XBOX

360 controller for user navigation and selection. For a full list of equipment, software,

and hardware specifications, please refer to Appendix A.

An overview of the overall integration of these technologies and a diagram

summarizing the architecture of this project can be seen in Figure 2-1. The compo-

nents mainly consist of (1) Data Extraction, (2) User Input, (3) Game Engine, and

(4) Visualization Output. Each module is described as follows:

1. Data Extraction Data is provided and collected primarily from MIT Lincoln

Laboratory’s database. These are in the form of parsable TSV files or portable

FBX models. Open source file readers and 3D software applications are used to

further customize the formatting and representation of this data to be used in

the gameplay application. Section 2.2.1 provides a detailed description on how
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Figure 2-1: Overview of Application Architecture
Four main components drive the application; (1) Data is first extracted as parsable files
from MITLL, (2) User input devices such as the Oculus Rift and Leap Motion are used to
control player movement, (3) Unity3D game engine is used for hardware integration and
software development, lastly the (4) Visualization is represented as a 3D rendition of
MIT’s campus enriched with Twitter data and interactive user elements.

information has been obtained and pre-processed for both static and dynamic

data.

2. User Input As expressed in Section 2.1.1, modern equipment is needed in order

to correctly monitor user input in a virtual reality setting. The processing

power to record sensory information, camera orientation, positional tracking,
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etc. requires the utmost speed and accuracy to convey a convincing and smooth

simulation. Scripts posing as managers keep track of player status, recognized

gestures, and user-defined actions in order to guide the proper game response.

3. Game Engine Unity3D is the game engine we utilized for core development.

Given that the Software Development Kits (SDKs) used are open source and

easily integrable into Unity3D, communicating between devices is more seam-

less. We can now exploit the gameplay capabilities of Unity3D to produce an

effective interface design and create a distinct user experience.

4. Visualization Output During gameplay, the HMD displays a stereographic

view from the player’s perspective. With correct camera placement and high

quality resolution, the visualization is meant to be realistic and aesthetically

pleasing to the naked eye. More information concerning the game mechanics

and output generation are discussed in Section 2.2.2.2.

2.2 Implementation

2.2.1 Data Extraction

Developing an accurate geographical environment into a 3D simulation is important

for effective situational awareness and user analysis. Data sources can often be incon-

sistent and diverse; therefore, much pre-processing is involved to ensure optimal data

is used for visualization and scene creation. In the next subsections, we will describe

two key sources for our data, LADAR and Twitter, and how they have been further

customized to provide as the foundational basis of this project.

2.2.1.1 LADAR Data

As a sensing technology developed at MIT Lincoln Laboratory, LADAR is utilized to

generate 3D representations of global locations[28]. LADAR measures the distance of

reflected light from a laser source to an illuminated target as an accurate metric for

28



height mapping. In 2005, a LADAR dataset was collected from an overhead aircraft

over Cambridge, MA encompassing MIT’s campus[37]. With about 1m resolution, a

dense height map was created where each planar point corresponds to the altitude at

that location. The final image resulted in a 1.0km x 0.56km region of Cambridge, as

shown in Figure 2-2.

Figure 2-2: LADAR Image of Cambridge
Height map of Massachusettes Institute of Technology generated from LADAR data in
2005. Final scan shows a 1m resolution image of approximately one square kilometer of
Cambridge, MA.

To produce a 3D model of this particular region, the LADAR data is con-

verted into a stereolithography STL file. This is a common 3D file format that can be

imported to various modeling programs for further customization and enhancement.

3D graphics and animation software such as BlenderTM[3] and MayaTM[11] was used

to aid in optimizing the view of campus. For noise reduction, mesh smoothing algo-

rithms was used to smooth jagged vertices and get rid of any outliers. These were

than exported to a FBX format so that it can be read into Unity3D.

Given this region of Cambridge, satellite imagery from Google Earth[7]

provides additional context of the setting. The longitudinal and latitudinal bounds
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of the area is (+42.3638, -71.0812) to (+42.3557, -71.1032). Two square JPEG images,

corresponding to about roughly one half km in world dimensions, were extracted from

Google Earth to capture the entire scene. These were then compressed into textures,

each 2048 x 2048 pixels. Section 2.2.2.2 describes how these images were later used

in the construction of the game environment.

2.2.1.2 Twitter Data

The Big Data source on which we wanted to perform further analysis is Twitter.

Twitter is a social media blogging site where users can post messages in the form of

tweets of 140 characters or less[45]. If posted from a mobile device, tweets are bound

with a geo-tagged location in addition to their username, text message, timestamp,

etc. One of the key challenges associated with the research on Twitter data is in

the searching, aggregation, extraction, and analysis of a large collection of posts.

Analyzing tweets can help provide insight on many events such as social behaviours,

controversial topics, user reputation, and popular locations.

Initially, these tweets are gathered from Twitter Decahose[5], which pro-

vides 10% of all random tweets, and can be narrowed down to user-defined criteria

(e.g time and location). In 2013, an MIT CSAIL[13] initiative collected geo tweets

on MIT’s campus known as the Twitter Corpus[66]. This data originally spanned

approximately three months from April 2013 to July 2013 and contained about 450

million tweets. Since then, MIT Lincoln Laboratory was able to continue retrieving

and ingesting this data on a database to run additional analytical models. Results

were exported to a readable TSV format as described in the following Section 2.2.2.2.

In our first visualization, we extracted about 6,000 tweets over the course of

five months from October 2013 to February 2014. As of 2012, Twitter has announced

a powerful open source API that permitted a full history of tweets[6]. This allows

more freedom to explore the Twitter dataset with additional user-defined criteria

and an expansive search history (as opposed to the original limitation of only three

weeks). Internally, MIT Lincoln Laboratory conducted an open source data initiative

to collect and archive live tweets. As a result, we were able to update our collection
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of tweets to display roughly 10,000 tweets from January 01, 2015 to July 25, 2015.

2.2.2 Pre-Processing

After ingesting the raw data, it is parsed into a tab separated value (TSV) format

and stored on the high performance database (DB) Apache Accumulo[2]. Using the

same procedures exercised by Weber and Gadepally[70], additional models can be

used to further query the data. Specifically, we utilized the Dynamic Distributed

Dimensional Data Model (D4M)[42], a high performance schema that can be used

with Accumulo. This permitted a customized pipeline to refactor the data described

below in Section 2.2.2.1.

Additional configuration went into initializing the game scene and generat-

ing 3D models. Given geographical data, global and local normalizations were needed

to accurately depict MIT’s campus. Visual efforts to efficiently represent Twitter data

aided in creating a more convincing environment. We also calibrated the player and

camera during instantiation to more directly correspond to user inputs and desired

actions.

2.2.2.1 Data Pipeline

We propose a pipeline that, given a collection of raw data, a researcher can perform

analytics on a subset of interest. Shown in Figure 2-3, we can generalize the pipeline

as it pertains to the D4M model. This can be described as (1) Parse raw data into

triples to be inserted into the database, (2) Ingest triples into the database, (3) Query

graphs from the database, (4) Analyze graphs using analytics and other methods.

1. Parse After collecting the raw Twitter data, the tab separated value (TSV) file

format is parsed to construct Associative Arrays. Associative Arrays represent

complex relationships of data either in a sparse matrix or graph form[42]. More

information can be found in Appendix C.1. Each parsed file creates three addi-

tional files pertaining to the triple (row, column, value) store. We reflected this

in the Twitter data; each row pertains to the tweet ID, each column pertains
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Figure 2-3: Data Pipeline for Twitter Analysis
(A) Generalized data pipeline in which raw data files are represented as row, column, value
triples and ingested on a database to be queried and analyzed using D4M. (B) Geo-tagged
tweets are stored and pre-processed into a TSV format which can be parsed to render 3D
objects in the scene.

to an attribute of a tweet (e.g status, username, location, etc), and each value

is the original tweet given a row,column pair.

2. Ingest Data is ingested onto the Accumulo database as four main tables as

shown in Figure C-2. Tedge shows a relationship between a tweet ID and a

particular entity, whose value it represented as a boolean for the row,column

pair. TedegDeg is the sum of column,value pairs. TedgeTxt shows the original

tweet text. This representation allows for D4M to be performed in the following

query step in the pipeline. The total time to ingest all the data took about 14

minutes. Figure 4-3 in Section 4.2.1 graphs the time it took to ingest the data

and comments on how parallelism improves performance.

3. Query Now that the data is ingested and parsed in the Accumulo database, it

is possible to query using D4M. D4M is an innovative new programming model

that combines numerous processing techniques such as Linear Algebra, Asso-

ciative Arrays, and Triple-Store databases. The D4M syntax allows for easy

data filtering by latitude and longitude, as well as quickly inserting additional

attributes to tweets that satisfy certain criteria. Table 2.1 shows some types

of queries performed using the simple format of Associative Arrays. Additional

queries can be beneficial for producing further filters and analytics when con-
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figuring the simulation.

4. Analyze The final step is to perform analytics on the developed graph. This

is highly dependent on the goals of the researcher. As an example on the

Twitter dataset, we can perform sentiment analysis and attempt to gain an

overall sentiment of a tweet based on the words within the original post. We

used sources such as Matlab[63] as reference that utilizes a sentiment dictionary

and creates a summation based on a score for each word in a post. Figure C-3

shows the simple function called to append a score value on the Associative

Array. Figure C-4 shows a visual representation emphasizing the benefits of

representing these relationships as sparse matrices where linear algebra can

easily manipulate and customize these arrays.

Post-processing, additional tasks can be performed. In particular, we wanted

to perform in-game tasks representative of what an analyst would like to explore and

research on a large data set. After the queries and analytics are performed above, we

can embed this as a TSV file that will be associated as meta data in the visualization.

This allows additional tasks such as dynamic filtering, aggregation, and adjustable

zooming to be done at runtime. These are later described in Chapter 3.

2.2.2.2 Model and Scene Formation

Creating the static scene requires some manual configuration. The textures provided

from Google Earth[7] were rendered on scaled 2D planes placed at the scene’s origin.

Importing the raw LADAR FBX model into Unity produced several model subdivi-

sions. One constraint of Unity is that each imported model is limited to 65,000 vertices

before partitioning itself into new models. These models were arbitrarily sectioned

and not necessarily positioned relative to the game’s point of origin. A global rota-

tion and translation in the scene was performed on each section to properly connect

models and ensure their positions matched correctly on the ground texture. Similar

to Google Earth and LADAR data collection, Unity’s default unit is 1m. This made

transitioning and manipulating elements in the scene very consistent.
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Tweets additionally needed to be represented in the 3D world. An open

source delimited file reader was used to parse each tweet as an individual record,

given a pre-defined header. Of all the tweets, approximately 98% were read in fully.

Ambiguous tweets that included unrecognized characters, invalid values, and/or miss-

ing fields were ignored. Translating these records into the game environment required

the use of publicly available models provided from Google Sketchup 3D Warehouse[1].

MayaTM[11] was used for provide further model enhancement and customization. At-

tributes of each record coordinated which 3D model to use. Figure B-1 shows an

example of how tweets are shown as blue birds by default whereas those containing

the word “danger" are represented as red skulls. This corresponds to the result of a

string matching analytic performed by D4M, as previously described in subsubsec-

tion 2.2.2.1.

Additional work was required to correctly map the geographical informa-

tion provided by a tweet into the game world. From Section 2.2.1.1, the latitude and

longitude boundaries of the LADAR and Google Earth images are well defined. There-

fore, translating real world latitude, longitude locations to game coordinates required

a simple geometric transformation onto the scene’s game ground layer. Figure 2-4

shows the final 3D rendition of MIT’s campus after all the necessary transformations

have been completed.

Configuration also needs to be completed for the player. Initially, the user

is instantiated as a first person controller. With a free-form camera, the player’s

perspective can dynamically change in the x,y,z directions and is free to navigate

within the bounds of the scene. Colliders on buildings, tweets, and other 3D models

prevent the player from reaching areas with obstructed views within objects. Script

managers have been assigned to keep track of player state when they navigate and

interact within the scene. Caching the player’s current view and move directions helps

dictate which player actions are currently permitted. Additionally, many efforts have

been made to construct a convincing user interface that promotes further exploration

on the dataset.
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Figure 2-4: Rendition of MIT’s campus imported FBX model
View of imported MIT FBX model into the Unity3D engine as seen from game’s free-form
camera. These models are then superimposed on Google Maps textures matching the same
scale and latitude, longitude bounds as the original LADAR data. Tweets are juxtaposed
onto the scene based on provided mobile geo-tagged information.

2.2.3 User Interface and Design

With the static scene configured, additional elements are implemented in the environ-

ment to enhance immersive gameplay and promote visual analytics. After a player has

been instantiated, the design of the user interface dictates how the user will interact

and how effective these related affordances convey player intentions.

2.2.3.1 DK1 Prototyping (And Lessons Learned)

In the first iteration, we developed and designed with the DK1. Once able to construct

a 3D scene, it was now time to transform the player experience into a first person

perspective. Below we mention and evaluate preliminary developments on the user

interface design.

Standardizing input for virtual reality poses as a challenging problem. The

original development kit for the Rift did not provide an out of the box solution so we

had to rely on typical input devices such as the keyboard, mouse, and the XBOX 360

controller for user interaction. When ‘wired in’, it’s difficult for a player to use devices

that are not directly simulated and perceived in the environment around them. The

gamepad controller proved to be the most prominent exception due to its familiarity
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in mainstream gaming and its minimal button and joystick layouts that made it easier

for user recall.

To confirm player direction and orientation, a 3D cursor/crosshair is shown

on a transparent texture in front of the player’s camera. This is used to also help

pinpoint where on the 3D scene the player is currently looking and facing. As the

player is constantly moving, the cursor remains in the center of the screen. If the

user chooses to pause player movement, the cursor is no longer fixed and is free to

interact with game elements within the camera’s current field of view. Movement of

the crosshair is then mapped by the joystick on the gamepad controller with selection

events enabled by a custom input module.

Figure 2-5: Mockup of GUI
View of selected tweet and HUD as seen from the stereoscopic view of the Oculus Rift, a
VR device described in Section 2.1.1.2. Utilization of 3D space allows freedom of GUI
placement; whether at a fixed distance in front of the player or on 3D objects

As shown in Figure 2-5, additional GUI elements on the Heads Up Display

(HUD) are displayed to help guide the player into further investigation on the Twitter

dataset. We incorporated a dock similar to the Mac OSX[53] that was at a fixed

distance from the player’s camera, oriented at the bottom of the screen. Introducing a

dock taskbar with icons was to invoke familiarity to the user. Showing users items that

are easily recognizable improves usability over needing to recall items from scratch

because the extra context helps users retrieve information from memory[24]. These

icons convey options users can perform on the Twitter dataset such as filtering time

ranges, changing object opacities, and executing string searches. These analytical
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tasks and enhanced user experience are described in Chapter 3.

Other interactable elements can be displayed and projected onto the scene

itself. The meta data associated with the tweet are represented as 3D displays anal-

ogous of a speech bubble popup. This reveals all the original data as it was read in

such as username, follower count, timestamp, text, etc. However, there were some

limitations when viewing text at a far distance. Due to a low resolution, any readable

text and menus required to be positioned close to the user. Pixelation added stress

on the eyes and made aliasing more prominent. Also, occluding the view of the player

interrupted the connection with the environment and often led to a noticeable break

of immersion.

Another input device we utilized to help promote interaction with the

dataset is the Leap Motion controller. Tests have been done to create a hybrid

solution where you can use a controller with one hand and have the Leap Motion rec-

ognize the other hand. Hand detection and recognition is highly dependent on CPU

performance and framerate. At times, the hand can often not be fully recognized if

portions of the hand are being occluded or not oriented properly. This became diffi-

cult when attempting to use raycasting as a selection event in the scene. Naturally,

the user is not completely stationary and small deviations in hand movement resulted

in a large margin of error during gameplay. Figure 2-6 illustrates how a user’s hand

is rendered in the gameplay environment.

Developing with the Leap Motion and XBOX controllers had some limita-

tions on the DK1. Many affordances still referred back to 2D conventions such as

mouse selections and displaying multiple screens. Also, some events were tediousness

and less forgiving such as moving a cursor with a joystick and raycasting with the

Leap Motion controller. The next section describes another iteration for a user inter-

face with the ergonomics of the user in mind. Furthermore, improvements on software

and hardware specifications on the DK2 helped promote immersion and interaction

for the player.
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Figure 2-6: Debugging with the Leap Motion Controller
Leap Motion hand controller allows the player’s hands to be rendered in the simulated
scene. Gestures and other inputs registered by the device can launch events and other
commands intended by the user during analysis and gameplay.

2.2.3.2 DK2 and an Improved Holodeck

The Rift’s introduction of the DK2 has brought many improvements that benefit

player interaction. Reduced latency and a higher resolution screen gives the user a

more realistic viewing experience with enhanced input tracking. Head and positional

tracking provides a more comforting experience as the view direction and movement

is synchronized with the user’s real-world pose. As mentioned in Section 2.1.1.3,

the introduction of the Leap Motion controller can now incorporate input from the

physical world, most specifically the hands, into the simulated digital world. However,

the interface needs to be configured carefully to stimulate 3D interaction and prevent

any flaws that lead to an unconvincing setting. Below is the design process of creating

an enhanced user interface that creates a more natural work station environment for

task management.

Affordances refers to the physical characteristics of an object that guide

the user into using that object[57]. Therefore, the representation of an object is an

indicator in which how the user plans to undergoe interaction. Design principles are

necessary in making sure these affordances remain effective and convincing. In partic-

ular, the more physical the response of an object, the wider the range of interactions

that may correctly correspond to that object. Making these elements always respond
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to player action additionally creates a sense of realism.

With the Leap Motion controller, we can combine these affordances with

responsive gestures. However, one thing to consider is that there is no haptic feedback

when interacting with digital content. Therefore, we have to rely on depth cues to

simulate tangibility. Objects that appear farther away should have less contrast and

appear less sharp than those that are in close vicinity. Lighting and shadows can be

a supplemental reinforcement. For example, when a hand approaches a button, the

orientation of the occluding fingers should effect how shadows are casted. Sound also

plays a critical role in user confirmation. Audio feedback, such as clicking, reassures

a player that an action has been completed. These indicators have been taken into

deep consideration in the UI elements of the workspace.

When simulating the workspace, we want to take into consideration the

ergonomics of the user. Designing an interface based on how the human body works

can lead to more “intuitive” interaction that seems more natural to the player. For

example, when in a seated position, more strain is placed on the neck when a player

attempts to adjust their view to look behind. Also, hands and arms tend to move

in arc-like shapes rather than straight lines. Alger[22] emphasizes the importance

of placeholders to illustrate where UI content should be positioned when promoting

productivity in VR. For readability, UIs should be a 3D part of the virtual world

within three meters from the user. They should also respond accurately to player

head movements. As shown in studies conducted by Chu[29], there are constraints

on the maximum range and angles in which digital content can be viewed by a user

in a virtual reality setting.

Our dock has attempted to utilize all these features in our first itera-

tion. A ’hoola-hoop’ design with widgets surrounding a player as seen in designs

by Abovitz[21] and Leap Motion[55] seem to be an effective UI for a 3D task man-

agement structure. This can be seen as a “cockpit” that surrounds the player. This

design is fixed onto the player, which helps provide additional reorientation during

player movement. Our efforts were to incorporate a generalized operating system

tailored for scalability and usability. Figure 2-7 shows the overall schematic of the
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cockpit interface. In summary, there are three main components:

Banner Radial strip above the player. Non-interactive and relays information to

the user such as time, direction, objective, etc.

Screen Space surrounding the player at eye height and composed of interchange-

able panes. Each pane is divided into three parts. The middle is unoccluded

and left open for the player to continue viewing the game environment. The

left and right sides are synonymous to one another. These regions are in-

tended for cascading panels that resemble traditional 2D displays. The main

component of a panel is a menu that displays content. The remaining portion

is a control which drives the content with interactable buttons or informa-

tional text.

Dock Radial taskbar situated at desk height slightly beneath the player. The dock

is composed of evenly spaced widgets portraying 3D buttons corresponding

to each pane. When a widget is selected, a pane is activated revealing all of

its child elements.

The progression of the dock design can be viewed in Figure 2-8 and Figure 2-

9. It attempts to incorporate key features when browsing in 3D space. Allowing more

space allows for more productivity according to Leap Motion’s Blog[52]. Being able

to have a physical arrangement of display windows makes it easier for the player to

have an organized space. This arrangement also leads to a reduced cognitive overload.

With spatially arranged interactable elements, the player can readily recognize where

to perform desired actions; leaving more room for working memory. This correlates

directly with dimensionality. Humans can tell when objects are on different viewing

levels, decreasing the time to inherently figure out the associated depths.

Additional design choices have been made to help the player select in the

simulation. Using procedures shown in Oculus’s Documentation[14], we can customize

the reticle to adjust in scale and position relative to the player’s view direction. By

drawing the crosshair at the same depth as the object it is targeting, the doubled
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image ’cross-eyed’ effect is removed (which usually happens when the eyes converge

on a plane not at the same depth as the object). In addition, it was necessary

to customize the input system module for the Leap Motion controller. Player states

during gameplay needed to reflect whether the user action is enabled and can interact

with the scene.

Figure 2-7: Schematic of VRLeapInterface Holodeck
2D representation of the user interface task management system. Composed of three main
elements: (1) Banner - above eye height, (2) Screen - situated at eye height, and (3) Dock -
located at desk height.
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Figure 2-8: 3D mockup of VRLeapInterface Holodeck
Early stages in prototyping of the 3D user interface. Placeholders are constructed using
the software Maya to illustrate optimal views and locations of displays and interactable
elements.

Figure 2-9: Iteration of VRLeapInterface Holodeck
Iterating on the mockup which originally had placeholder elements, components are now
implemented and connected with one another in the user interface. Specific user actions
dictate what state and items are visible in the UI.
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Chapter 3

User Experience and Interaction

3.1 Analytical Tasks

Interaction techniques fuse together user input with output to provide a better way

for a user to perform a task[60]. Common tasks that allow users to gain a better

understanding of data include scalable zooms, dynamic filtering, and annotation.

Below, we describe some tasks pertaining to data analysis that can be performed

fluidly by the user in our application of the MIT Twitter dataset.

3.1.1 Navigation and Exploration

Creating a life-sized simulated setting enables the player to naturally move about the

scene. Virtual reality fully immerses the player and enables a constant stimuli for

exploration and discovery. Using MIT’s campus allows players to recognize familiar

landmarks and discover new Regions of Interest (ROI). The utilization of a free-form

camera permits different perspectives that would not have been so credible in the real

world. Adjustable zooming is possible by having the camera move closer or farther

from a relative position in the scene. The user’s freedom to move about the 3D scene

is key to revealing the overall framework and features of the dataset which would not

have been so noticeable on a traditional display.

Locomotion, however, remains an issue within VR due to effects of simu-
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lator sickness. Our use of the gamepad controller can effectively move the player in

the scene along the planar x,y,and z directions. However, if the user’s look direction

does not necessarily match the move direction, this discrepancy can create a sense

of nausea. Augmenting the cockpit with a navigation widget that contains a list

view of locations helped solve issues pertaining to disorientation in the landscape and

appealed to the desire of “jumping” to locations. Figure 3-1 is an example of this

3D element as seen by the player. When the user selects a Point of Interest, they

are teleported using a linear interpolation between the player’s current position and

the selected destination. The transition is initially fast but gets smoothed and slows

as the destination is reached. Exploiting the fact we are using a 3D game engine

allows for quick physics calculations and collision detection if necessary during player

movement.

Figure 3-1: List View of Teleporting Points of Interest
During gameplay, the player can navigate by selecting from a dropdown of nearby
locations or Points of Interest. Visual queues such as color contrast and 3D movement
provides the player useful feedback while using this virtual user interface.
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When a tweet mentions a location, the post provides additional context

and valuable information that could determine a defining characteristic of an area.

Additionally, directly navigating to that area can give more insight on how a collection

of tweets are gathered or the overall significance of that Point of Interest. For example,

many people tweeting in the Kendall area post about “going to work" or “grabbing

food". Navigating to that portion of the scene, we can see that this is a common place

for commuters; being situated at a T station with local shops near by. We can also

explore an area in which a user may not necessarily have any prior knowledge about.

Recognizing a collection of tweets in a certain area and extracting common phrases

posted by certain individuals, we can determine what makes that area popular and

under what conditions (e.g. recreational, academic, commercial, food related, etc.).

3.1.2 Identification/Selection

Tweets are represented as 3D objects in the environment. The status of a tweet can

be represented visually by the model observed by the player. Characteristics of tweet

models such as type, size, color and motion allow the player to instantly know the

nature of the tweet. By default, tweets are represented as blue birds synonymous of

the Twitter logo. However, if the user wants to match a tweet to a pre-processed

analytic, they can customize which model and color that tweet should now look like.

As per the example shown in Figure B-1, the red model of a skull depicts the matching

of the word ’danger’.

These visual queues now give the player an enhanced situational awareness

as they are immediately represented in the scene. Users have the option to perform

further actions to further dive deeper into the dataset. During gameplay, the position

of a tweet relative to the player adjusts the game object’s Level Of Detail (LOD).

A spherical interaction zone highlights tweets that are in the vicinity with a radius

of approximately 20 meters. When a particular tweet is selected, a 3D display is

rendered showing all the original data as it was read in such as username, follower

count, timestamp, text, etc. As opposed to the DK1 version where this speech bubble

is positioned next to the tweet in world space (as seen in Figure 2-5), the DK2 version
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embeds this information display as a part of the cockpit user interface (as seen in

Figure 2-9). Now a scrollable screen is within reach of the player and text elements

are more easily viewed from the player.

3.1.3 Filtering/Dynamic Queries

As shown in Figure 2-5, menu options on the GUI allows for further analysis on

the data. Being able to apply filters and dynamic queries can help analysts focus

on specific features, reveal underlying structure, and formulate hypotheses. In this

project, there are a few ways in which we can filter the Twitter data in the original

domain. First, analysts can select a time range interval which narrows down the

tweets in the dataset by their corresponding timestamp. Next, a user can define which

models are visible, deciding whether to see all the tweets at once or just a subset.

Another option is to change the physical landscape itself by adjusting the opacity of

the buildings rendered in the scene. By default, buildings are fully opaque with a solid

color. However, there are options to change shaders applied to the 3D model such

that it is wire-framed or completely transparent. UV mapping functionality allows

the model to apply Google Maps textures and make the 3D scene more realistic.

Changing the shader of the campus model allows the option to compare tweets in

separation or in conjunction with their landscape.

Progress has been made to conduct queries that bring tweets from a physical

to a logical representation. Tweets can be searched by keywords that can produce

groupings in three-dimensional space. By use of a virtual keyboard, users can type

and define a criteria to do a string match on the tweets. Determining how the virtual

keyboard interacts and responds to player input went through many iterations due

to the margin of error that resulted from selecting small buttons. When attempting

to select a specific key or character, users found it tedious trying to do a selection

in a small area. The solution was to create a Top-Down Open Palm experience that

followed an Approach-Proximity-Selection pattern as seen in Figure 3-2. The Leap

Motion has the best hand recognition and tracking when the hand is outward facing,

palm is perpendicular to the line of sight, and the fingers are spread out wide, non-
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occluding one another. As the user maintains this pose, the user’s fingers can act as

individual cursors for more precise selections. The proximity of the hand and fingers

determines which buttons light up on the keyboard accordingly. If the duration of

a finger is about two seconds, the key is selected. After typing a query and if a

match exists, the tweet moves from its original location to a new one where a virtual

wall is formed as shown in Figure B-1. This allows analysts to see connections and

relationships between various Twitter topics, locations, users, etc.

Figure 3-2: Leap Motion Interactable Keyboard
To aid a player in completing dynamic queries and filter on the Twitter dataset, a virtual
keyboard was created. This followed an Approach-Proximity-Selection pattern. On
Approach, the player moves there hand to desired keys on the virtual keyboard. At
Proximity, specific keys light up letting the user know they are interactable. On Selection,
the closest key is selected if the user’s hand remains stationary long enough on that
element. This then executes a key or button press.

3.1.4 Clustering/Pattern Recognition

Overlaying data on top of it’s original geographical landscape can help detect pat-

terns. For example, some tweets in this dataset share common characteristics such

as location, topic, etc. In the default physical view, if a user posts a tweet at the

same location of another one, the new tweet is physically placed on top of the pre-

vious tweet. As a result, vertical stacks can be created in the environment where

the ordering of tweets is shown chronologically by timestamp from bottom to top.

This clustering can help define the nature of the geography or the social behaviour
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of users. For example, clusters can be seen more around popular public places such

as dining halls and dormitories on MIT’s campus and less near the academic side of

campus. Another noticeable pattern is that some individual users post in bursts, in

which they make multiple tweets from the same location.

We can also detect patterns based on pre-processed analytics. One example

of an analytic performed on the Twitter dataset was Sentiment Analysis as described

in Section 2.2.2.2. By utilizing methods shown in [42] and [63], we are able to create

a running count of words that is matched in a sentiment dictionary. Each word

in this dictionary has a score relating to it’s overall sentiment (typically ranging

from -10 to 10 where the most negative\positive corresponds to the most bad\good

sentiment respectively). Figure 3-3 shows an example of the scene where colors of

the tweets represent their corresponding sentiment. As many are neutral in yellow,

there are some noticeable areas of red (bad) and green (good). This can refer to

the changing sentiment of a particular user over time (e.g. dissatisfaction over time)

or of a collection of tweets at a particular location (e.g a protest or promotions on

campus.). It is up to the analysts discretion to determine what context the sentiment

provides.

Figure 3-3: Twitter Sentiment on MIT’s Campus
The Twitter dataset can be visually represented according to their sentiment score. After
applying the pre-processed analytic, the color of the 3D data models can be based on a
gradient from red-yellow-green corresponding to a bad-neutral-good overall sentiment.
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3.1.5 Detail-On-Demand

With a tweet of interest selected, additional actions can be performed to reveal new

information particular to that tweet. Hovering over and selecting the tweet with a

virtual cursor opens a display in 3D space. As shown in Figure B-2, we can see all

the attributes that are associated to that tweet when it was initially read into the

database. Other popup windows as shown in Figure 2-9 can be utilized to extract

more information pertaining to a user’s post. Links mentioned within the original

post can be rendered as live HTML webpages. The user’s profile page can be viewed

when the tweet has been selected as well. This can give more information pertaining

to a specific user. Additionally, a live web browser can be rendered within the game

to be used as a supplemental tool to discover more information about the user.

There are other actions that can be performed to help track user behaviour.

One option is to show a user’s preceding or succeeding tweet if there exists one in

the dataset. Figure B-3 illustrates an example of visual pointer from one tweet to its

succeeding tweet. This renders a directed 3D waypoint arrow in the scene revealing

the user’s next location at which they made a tweet, relative to their previous post.

This helps show routes of users and known behaviours given geographical information.

We can filter amongst tweets of the same user by username or by different users by

hashtag.

3.2 Constructing Narrative

Executing the above analytical tasks can consequently produce the construction of a

narrative. Building these stories provide a good framework for analysts to develop and

test their hypotheses. With much data to digest, it can be difficult to effectively draw

conclusions and develop a more direct approach to understand a network’s overall

structure. However, by making the execution of these analytical tasks analogous to

building a story, users can create informal guidelines or objectives that can aid in the

process data analysis. For example, as the player follows one tweet, it can mention a

topic or a Point of Interest. Navigating to the succeeding tweet or location, the user
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can utilize this additional information and formulate it’s reasoning based on previous

posts and other factors (e.g user reputation, geographical location, etc.). These chain

of events can be influenced not only by the existing flow of data but also by the

analyst’s natural train of thought.

These stories make the results for data analysis more user-friendly, persua-

sive, and more conducive to decision-making[23]. Stories can help construct a set

of hypothesis that analysts could use to investigate data and enable more rigorous

data analysis. The narrative is not only dictated by what they discover but how they

reached that decision. These enrich the stories and lead to deeper insights. The idea

is for the analysts to navigate back and forth between the data and the developing

story to ensure a good balance between creative narrative and revealing analytics.
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Chapter 4

Results

4.1 Evaluation

This thesis was conducted as an experimental-based research project with an ethno-

graphical study on data analysts. For a general data scientist, analytical tasks are

performed to discover underlying data structure and make progress in decision mak-

ing. Given this specific context of juxtaposing social media on a familiar landscape

such as the MIT academic campus, this analytical tool was able to relate to a broader

audience. In particular, demographics were of faculty, staff, and predominantly the

student body. Much evaluation came from tests exercised from participants in the

laboratory as well as those attending minor demos.

4.1.1 VR as an Effective Workspace

Combining the design principles of a 3D user interface with the affordances provided

in the user experience posed the question, “How effective is using virtual reality as a

workspace for task management?". Simulating a virtual reality workbench exploits

the use of 3D space that can be further tailored towards user needs. A more er-

gonomically designed interface matches human natural movements and perceptions

that make it quicker and easier to complete distinct tasks. As a result, the spatial

arrangement and grouping of interactable objects surrounding the user is pertinent
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for inspection and in-depth analysis.

Capturing user actions that are translated to analytical tasks requires an

effective UI. By avoiding occlusion all together or creating a series of cascading win-

dows that display textual information, a degree of categorization was added. This

made recognition and recall of screen placement easier for the user. Positioning ob-

jects “with-in arms reach” made interaction more welcoming to the player. As objects

were orderly placed accordingly, the use of visual queues enhanced user interaction.

Simulating depth with lights, shadows, and interchangeable colors conveyed different

states of the UI (e.g. active, enabled, disabled, etc.). The design of other affordances

can be referred to Section 2.2.3.

Input management plays a key role in constructing a workbench conducive

to task management. Accepting all possible inputs at all times helps minimize the

margin of error for a direct task and expands user freedom. For example, when

selecting a dock widget, a user can rely on the look direction of the Rift where a

raycast will determine if an object is in the line of sight. In addition, the user can use

the gamepad controller to confirm the selection of a widget. Using the leap motion

controller, the player can alternatively use their hand to simulate touching the 3D

widget.

However, some drawbacks were evident when users were trying to use this

workspace. Tasks took longer to complete due to the subtlety of the interface. To

accurately portray a selection, techniques recognizing hand placement and stationary

movement was necessary. By maintaining the "Open Palm - Outward Facing" ap-

proach, the hand is best recognized as a 3D cursor where the fingertip edges or the

center of the palm resembled a 3D cursor. Also, some tasks were not as customizable.

Incorporating more tactile selections required larger text and larger items. Therefore,

each pane or window had limited information and more navigation was required to

go through the windows.
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4.1.2 VR as a Visual Analytics Tool

Evaluating the virtual reality platform as a visual analytics tool requires close ob-

servation and knowledge of the data analysis process. Users are instructed to com-

plete analytical tasks that assist in the exploration and understanding of the Twitter

dataset. As described in Section 3.1, interaction techniques that users can complete

for analysis are subject but not limited to navigation, identification, filtering, and

clustering. As these tasks are executed, we could examine and make observations

concerning the user’s incentive. Informal performance measures can determine how

effective VR is as a visual analytics tool. This includes time it takes to recognize

an anomaly in the dataset (e.g. red skull model), execute a command, transition

between tasks, and focus on particular aspects of the user interface. We can also take

note on the scope and consistency tasks were performed, especially for navigation.

All together, these tasks define activity patterns that are used to characterize each

session of a user. We can then compare how consistent these metrics are amungst

users over time.

Utilizing the virtual reality platform provides many advantages for effec-

tive gameplay and analysis. The 3D environment is very appealing to a first person

perspective due to the extent of adaptable view modes. From a first person POV,

a user is free to navigate the scene from the ground level. Transitioning to a bird’s

eye view, the player can see clusters and overall patterns on campus at a much larger

scale. Also, it allows for supporting other strategies to discover particular insights on

the dataset. In a graphical sense, VR enables the player to navigate a scene and rely

on visual cues such as clustering, color, model, etc. to grab their attention and draw

connections. The user can confirm relationships among user behaviour, geographi-

cal location, or temperament of conversation. Users can use this new information

to guide themselves on what tasks to perform next. Furthermore, constructing the

workspace to be embedded within the virtual environment is conducive for decision

making. The analysts do not have to disengage themselves to complete further in-

vestigation on another application or device. Use of the in-game web browser allows
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for external lookups without leaving the game. Lastly, the workbench is organized

to be more welcoming to natural interaction and cater to user tasks. This includes

exploration, filtering, querying, and navigation. Having these readily available at the

users’ fingertips promotes a series of actions that are more fluid during gameplay. By

limiting the number and position of displays viewed by users, they are able to be

more efficient and focus on one task at a time.

There were some disadvantages using virtual reality as a data tool. When

using the visualization, discovering elements that were far from the camera were

difficult to see. Incorporating beacons or light-ups could help mitigate this issue.

Navigation also remains a concern for users during gameplay. Teleporting to cached

destinations is a simple solution, however, does not facilitate more user freedom to

navigate to other regions of interest in the scene. Also, there are a limited number of

actions that can be performed at a given time. Users would have to take additional

steps to accomplish a series of tasks. Lastly, there are only a few tasks available to

the player total. Given that this was an experimental tool, only a few options were

implemented initially. Additional tasks would need to be made available for users to

more accurately depict the data analysis process.

4.2 Performance

4.2.1 Ingest on Database

Performance and high frame rate is important when working in simulations that

show many data points. Ingesting the Twitter data on Accumulo with D4M analyt-

ics is proven to be fast. D4M achieved 100,000,000 inserts per second as it’s peak

performance[42]. Accumulo leverages HadoopDFS[8], which is an open source repli-

cated block based distributed filesystem modeled after Google Big Table[25]. This

database is typically NoSQL, allowing for the construction of data mining applica-

tions that do little read-modify-write and contain relaxed restrictions for performance

boosts.
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1 % use pMatlab to define global indices and map the files
2 myFiles = global_ind(zeros(Nfile,1,map([Np 1],'c',0:Np-1)));

Figure 4-1: Command to Execute pMatlab Function in Parallel
pMatlab is used to define global indices and map the files defined by Nfile. Np is used to
define the specific number of processors to use.

Figure 4-2: Time of Ingest - Daily
Ingestion of Twitter data that extracted tweets in the range of MIT. Tweets were collected
daily from January 1, 2015 to July 25, 2015. Months of higher data ingest include
February, May, and July.

Most of the computation comes from parsing the pre-processed Twitter

data. We utilized a mechanism called distributed arrays that are useful for writing

efficient parallel programs[41]. By defining a specific number referring to the processor

the instance is running on, we can run algorithms in parallel. In particular, we

added a “map" object to the construction of an array in pMatlab. A single command

demonstrating the mapping is shown in Figure 4-1. Figure 4-2 shows the overall time
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Figure 4-3: Time of Ingest - Parallel
Comparison of times when ingesting the data with different number of processors,
𝑁𝑝 = 0(unparalleled - blue), 2(orange), and 4(green). When running with four processors,
the maximum time was about 856 seconds, approximately 14 minutes.

when ingesting the data for the course of seven months from January 1, 2015 to July

25, 2015. Figure 4-3 reflects the total time for each job to execute when running

under a specified number of processors 𝑁𝑝 = 0(unparalleled), 2,and4. As expected,

running separate jobs with an increased number of processors linearly decreases the

time in which the job finishes.

4.2.2 Game Rendering and LOD

Creating a 3D environment can be costly on both the GPU and CPU. As the camera

renders a scene, the number of draw calls is determined by the amount of faces and

vertices that are within the field of view. Therefore, the higher resolution the 3D

model, the more workload is performed on the processor. When instantiating 3D

objects with colliders, additional computation is needed for placement and collision
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Table 4.1: Level of Detail Performance (FPS)
1000 5000 10000 25000 50000 100000 250000 500000

Particles 745 411 304 138 92 49 18 6
Cull 0% 22 3 1 - - - - -
Cull 1% 157 32 21 8 3 - - -
Cull 2% 250 68 37 14 5 2 - -

Recorded rate in frames per second (FPS) based on object instantiation type and number
of objects viewable from the player’s camera. Particles do not contain any 3D object
geometry. Therefore, more workload is done on the GPU and there is a more noticeable
performance improvement. Culling is used to render 3D objects when only a percentage of
the object is within the camera’s FOV. As expected, the higher the percentage, the better
the FPS and more objects can be viewed.

detection. Billboarding, which attaches a script that does auto-rotation towards the

camera, can also add a performance hit during runtime.

One solution in Unity3D practice to improve performance was to take ad-

vantage of particle systems and Level Of Detail (LOD)[71]. Particle systems are tech-

niques in computer graphics and game physics that uses a large number of sprites or

meshes to render and resemble a collective entity. The shader that is drawn on the

GPU defines features of each particle. For example, matrix calculations can reference

the particle’s pose relative to the global camera in order to reposition the particle to

face the camera. However, there are limitations on binding data to locations where

particles are rendered. LOD allows the instantiation and resolution of a 3D object

with a user-specified location to occur relative to the player’s distance from that

object. If the object is outside the vicinity of a fixed distance from a player, the

object is culled and no longer rendered from the camera. Hence, user interaction is

limited within the player’s field of view and object states such as collider activation

can be more easily controlled[33]. Section 4.2.2 compares the total number of objects

viewed with the type of object instantiation. Culling percentage is determined by the

proportion the object is seen on the screen.
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Chapter 5

Conclusion

5.1 Summary

One of the main challenges with Big Data today is coming up with a proper data

representation for efficient user analysis. As data scales into higher dimensions, it can

become overly complex. Visualization is key in the improvement of pattern recogni-

tion and data analytics. At Lincoln, we experimented with using novel methods and

emerging technologies to enhance visualization and user interaction for data analy-

sis. Virtual reality creates an immersive environment for the user; as data is overlaid

within a geographical domain, an enhanced situational awareness and cognition can

be achieved.

These advances in virtual reality continues to grow as computation and

processing becomes faster on both the hardware and software fronts. As a result,

these devices are becoming more powerful, affordable, and readily available to the

research and development community. This increases the capability of integrating

visual data exploration and interaction within VR. Below, we address some concerns

during the development process and potential avenues moving forward.
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5.2 Challenges and Areas of Improvement

5.2.1 Hardware

For demo and portability interests, this work has been completed on a Macbook Pro

laptop. Although producing promising results, there were some foreseeable limita-

tions. As more objects populate the scene, more system checks are completed frame

by frame. It is recommended to have a faster processor to achieve better performance

and reduce jerky movement as the camera pans a scene (e.g. scene judder). Oculus

suggests a frame rate of at least 60-75 fps for a comfortable user experience. With

more vertices rendered in the scene, more draw calls are sent to the GPU. In ad-

dition, Oculus Rift rendering and Leap Motion gesture recognition requires a lot of

processing.

In May 2015, Oculus development for the OS X and Linux paused in order

to focus on delivering the high quality consumer-level VR experience for Windows[35].

The Rift requires a desktop-level graphics processor. The 15-inch Macbook Pro uses

mobile graphic processors that don’t necessarily have the processing power of the

desktop graphics cards in the Rift’s preferred specs. Upgrading from a traditional

laptop to a more powerful machine can produce a higher frame rate and a more ideal

game experience.

5.2.2 Usability

“Know thy user, for he is not thee”

Conducting experimental research in which the lead developer makes core

decisions can misinterpret what the user wants and how the product is designed[58].

Partially falling into the same demographic of a data scientist, I have based my

decisions towards my experience or qualitative results proven in practice that seemed

the most suitable. Having bias that detracts from having complete merit towards

the user can impact the full potential of a user product. However, given that this

was an experimental study, this did not hamper my development process. Since most
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of the project was defining an effective user interface as opposed to iterating on an

improved product, the research enabled me to develop more freely. In addition, most

participants and active users were not very experienced or professional analysts. A

more involved study including experts in data analysis could have proven to be very

useful in evaluating the effectiveness of this platform.

Designing a 3D user interface in virtual reality remains an experimental

and investigative study. Instructing users to break traditional 2D conventions when

utilizing computer interfaces and adapting to a 3D virtual display that appeals more

to human ergonomics is a strong transition. The creation of a virtual workbench was

essential to the visual analytics pipeline. The goal was to create a task management

system that continues to guide the user, supports different analytical strategies, caters

to user demands, and facilitates further exploration. As described in Section 2.2.3,

this requires an effective user interface that makes objects and items more interactable

and responsive. It was necessary to create supplemental visual queues to simulate

both depth and positioning. For example, the arrangement and labeling of analytical

tasks as 3D widgets seemed to be an improvement on the 2D task bar that usually

remained fixed to the bottom of the user’s camera.

Now that we are creating a sense of telepresence, it’s essential to not break

immersion. However, some constraints ephasized some drawbacks that effected us-

ability. One disadvantage includes the processing power of CPU and GPU. When

there is a noticeable latency in frame rate, it’s hard to maintain fluid gameplay and

scene judder is more prominent. Another is potential delay in input to output re-

sponses, such as selecting items and monitoring head movement. Navigation also

remains an issue due to limited input devices that can be convincingly portrayed in

the virtual environment. In addition, there is a limited number of user actions, which

confines user freedom. Making more iterations that enhance the availability of these

tools could have a considerable impact.
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5.3 Future Work

Although much progress has been made, further improvements could enhance both

application performance and user interactive gameplay. Rendering 3D models scales

linearly with performance. Activating and deactivating colliders when needed can

help reduce the computation load. Additional shaders could be applied to the 3D

buildings of Cambridge to provide a better rendition and give the player more options

of how the tweets are overlaid in the scene. Occlusion layers for overlapping tweets

and blocked buildings could be applied to prevent unnecessary rendering.

Further optimization can be performed on the campus model. The raw

LADAR data produced a model of about 200,000 vertices for each of the 15 sections,

totaling roughly three million vertices. We could construct a point cloud mesh where

each vertex is drawn directly on the GPU. This allows an order of magnitude of

millions of points to be generated without maintaining the overhead of rendering

additional faces and other geometry. However, this is determined by the shader used

and there is no intractability of the 3D positional data during runtime. For a gameplay

experience, we reduced the vertice count nearly 30 percent to 100,000 vertices. Then,

the formation of faces allowed for a common static environment to be constructed

with features such as colliders and occlusion culling.

Additional optimization can be performed by displaying a dynamic envi-

ronment and how to improve the mapping of tweets. To make the 3D setting more

scalable, we could incorporate dynamic terrain construction that incorporates Shuttle

Radar Topography Mission (SRTM) data and Google 3D Maps. To be more accurate,

we could use a Mercator projection that does the same transformation of latitude and

longitude coordinates as the 2D Google Maps textures. Also, we could further uti-

lize the geohash to group tweets more precisely in accordance to the distance of the

player. Therefore, the resolution of viewable tweets can be displayed in a grid layout.

Although we have a few useful analytics now, we intend to add more features

that allow for further engagement by the player. Originally, this work was done in

Unity 4.6 and Oculus Rift DK1. Implementing Unity’s UI system allows for 3D text
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and more engagement with Leap Motion. Continuing to exercise 3D interactions

from hand inputs rather than gamepad controllers could help immerse the player

and manipulate the data more effectively. Currently, we have upgraded to Unity 5.0

and Oculus Rift DK2 to utilize the enhanced display and more accurate positional

head tracking. Some potential future features we plan to implement in the user-

interface include multi-selection and annotation. Algorithms using machine learning

and sentiment analysis techniques could be used to further analyze the data. We

also plan to continue researching other ways to enable user interaction and improve

usability.

5.4 Closing Remarks

This project reveals the added potential of how utilizing the VR platform can bring a

more effective visual experience. We have effectively visualized Twitter on a 3D model

of MIT’s campus to improve Big Data visual analytics. This research has shown how

1. Virtual reality can also be used as a data visualization platform

2. Creating a more immersive environment enables user interaction

3. Patterns and visual analytics are more efficient when working in a geospatial

domain.

4. Design choices promote the improvement of visual analytical systems

As virtual reality and other technologies continue to improve, these mediums are

highly considered in the pursuit for effective data visualization and enhanced situa-

tional awareness. With this research of showing tweets on MIT’s campus, efforts can

be made to extend this work into using other related geo-tagged information that can

be embedded into an interactive 3D world.

65



66



Appendix A

Equipment Specifications

Image Hardware Software

• MacBook Pro 15-inch, Mid 2009

• Processor: 3.06 GHz Intel Core 2
Duo

• Memory: 8 GB 1067 MHz DDR3

• Graphics: NVIDIA GeForce 9600M
GT 512 MB

• OSX 10.10.5
Yosemite

• Unity3D
5.1.1f1

• MonoDevelop
4.0.1

• Oculus Rift DK2 • SDK 0.5.1 Beta

• LeapMotion Controller • SDK
2.3.1+31549

• XBOX 360 Controller (wired)
• TattieBogle

XBOX 360
Driver[18]

Table A.1: Equipment Hardware and Software Specifications
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Appendix B

Additional Screenshots

Figure B-1: Screenshot of Multiple Queries
Queries can be performed on the dataset to create a floating virtual room where walls are
populated by tweets that match user defined criteria.
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Figure B-2: DK1 Information Overlay on Tweet
Upon selection, the 3D representation of a tweet changes color and launches a speech
bubble revealing all characteristics.

Figure B-3: Waypoints for Tweet Posts
Waypoint arrows rendered in the virtual world lets the player track social behaviour of
Twitter users in the order in which the tweet was delivered.
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Appendix C

Associative Arrays and D4M1

C.1 Associative Arrays

Associative arrays are data structures that can perform mathematical operations and

represent complex datasets. They can be used to show the associations between

multidimensional entities (e.g. row, column, and value tuples). Some key features of

associative arrays are as follows:

• From 𝑑 sets of keys 𝐾1 ×𝐾2 × ...×𝐾𝑑, they map to a value set 𝑉 .

• They are similar in structure as matrices; consist of row and column keys as

strings and values represented as strings or numbers.

• As a data structure, associative arrays return a value given some specified num-

ber of keys.

e.g, 𝐴(𝐾1) = 𝑣1, where 𝐴 is an Associative Array.

• They are defined as algebraic semi-rings.

A ring 𝑅 is a set with two main operations: (1) Addition (which maintains

the mathematical properties of associativity, commutativity, additive identity,

and additive inverse) and (2) Multiplication (which has the properties of asso-

ciativity and the multiplicative identity).
1All notes are adapted from MITLL section course on Advanced Database Technologies[56]
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Therefore, a semi-ring is a set 𝑅 with all the properties of a ring except an

additive inverse. Also, the distributive property is valid for rings and semi-rings.

• Closed under algebraic and set operations

e.g, A+B, A-B, A&B, A|B, A*B, etc. all yield an Associative Array.

• Array indexing is composable.

e.g, A(1:2,:), A == '1', etc. update or reproduce an Associative Array.

C.2 Two-Dimensional Associative Arrays

In the 2D case, two keys (known as the row and column) can map to one value.

Figure C-1 shows an example of the two-dimensional associative array. These arrays

can have multiple representations for complex datasets such as the following:

• A sparse matrix with string row and column labels.

• A graph with vertex and edge labels or weights.

• 1-to-1 triple store, as utilized in the Accumulo database.

Figure C-1: Two-Dimensional Associative Arrays Example
In this example, Associative Array 𝐴 has two keys called row and column keys. The value
for row key 𝑎1 and column key 𝑏2 is the string 1. Associative arrays can be thought of as
sparse matrices where the value maps to the intersection of the row and column labels.
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C.3 D4M

C.3.1 Introduction

Dynamic Distributed Dimensional Model (D4M) is a library that allows you to rep-

resent data as Associative Arrays. These Associative Arrays are manipulated using

standard linear algebraic operations. Databases like Accumulo can utilize Associative

Arrays and can be implemented in MATLAB or Octave. The D4M API makes it very

easy to develop analytics, perform calculations, and undergoe indexing on Associative

Arrays.

C.3.2 Indexing and Querying

Works like the sparse matrix data structure in MATLAB, but with string (character

array) keys. After indexing and querying, the result always returns an associative

array. Below are some simple commands and operations that can be executed:

• Index into the Associative Array using row and/or column key

e.g, A('#al,', '#b2,')

• Every label ends with a delimiter (e.g ',') to allow the concatenation of keys

e.g, A('#al,:#d4,', '#b2,')

• Use “:" to extract all the elements or a specified range

e.g, A('#al,:#d4,', :)

• Use “StartsWith" to indicate all keys that start with a given substring

e.g, A(StartsWith('#al,'), :)

• Can also use integers to index a subset of the Associative Array

e.g, A(1:5, :)

• Use “>",“<", “>=", “<=", and “==" to get sub-Associative Array with values

that satisfy the given condition
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e.g, A>B, A≥B, A<B, A≤B, A == B

C.3.3 Constructing and Destructing

Utilizing the D4M API, there are certain ways in which Associative Arrays can be

constructed and destructed. Below lists some examples in which information can be

obtained from an existing Associative Array or how a new one can be generated.

• Use “find" to extract associative array triples

e.g, [rows, columns, values] = find(A). Results in a three character

arrays containing row labels, column labels, and values. One for each separate

entry, ending with a specified delimiter.

• Use “NumStr" to get the number of keys or values in any character array

e.g, NumStr(rows)

• Use “Row", “Col", “Val" to get character arrays of unique row/column keys and

values

e.g, Row(A), Col(A), Val(A)

• Construct an associative array using “Assoc"

e.g, A = Assoc(rows,columns,values). Input parameters are strings

of row/column keys and their respective values. Each input parameter should

have one or more of the same number of keys and values.

C.3.4 Communication with Database

It is important to know how to extract keys and triples of an associative array, and

how to construct them.

• Connect to database using “DBServer" and host credentials

1 DB=DBserver(hostName,'Accumulo',instanceName)
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• Bind data to Accumulo tables

1 Tedge=DB('tweets_Tedge', 'tweets_TedgeT');

2 TedgeTxt=DB('tweets_TedgeTxt');

3 TedgeDeg=DB('tweets_TedgeDeg');

Figure C-2: Representation of Accumulo Tables
Representation of tables as used on the Accumulo database: (1)Tedge is a table that is
labeled by row keys corresponding to tweet ID and column keys corresponding to
corresponding tweet data. If a relationship exists between a row and column key, their
value is represented as a boolean, (2) TedgeT is the transpose of table Tedge, (3)
TedgeDeg is the table that corresponds to the sum of unique column/value pairs, and (4)
TedgeTxt contains the original tweet text.

• Use the “nnz" command to return number of entries in the table.

e.g, nnz(Tedge)

• Use “put" to insert Associative Array in a table

e.g, put(Tedge,A)

• Querying table is the same as indexing into an Associative Array

1 Atmp=Tedge(:,'word|#a1');

2 A=Tedge(Row(Atmp),:);
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C.3.5 Sentiment Example

Sentiment analysis for tweets can be completed by representing Associative Arrays

as sparse matrices. Below, we illustrate this example with the following steps:

1. Create a smaller sentiment Associative Array (S) containing a single column

“score” for each row representing a single word. This is constructed from a senti-

ment dictionary with a weight corresponding to each word (e.g. ‘AFFIN-111.txt’

is a viewable online sentiment dictionary used for analysis[63]).

2. Extract all the columns in the original Twitter Associative Array that contain

any of the words in the sentiment Associative Array, forming a new Associative

Array (W).

3. Do a summation by multiplying the logical representation of the W with the

values of S to construct a new Associative Array that contains a score for each

tweet.

The result can simply be appended to the original Associative Array, aug-

menting it with a new sentiment column. The function call in MATLAB is shown in

Figure C-3 and the visual representation of the Associative Array matrix manipula-

tion and arithmetic can be seen in Figure C-4.

1 % DetermineScore - Logic for Sentiment Associative Array
2 %% Returns final associative array, Aout, which has the appended
3 %% sentiment score determined from the initial associative array, A
4 function [ Aout ] = DetermineScore( A )
5 %Construct assoc from sentiment dictionary
6 S = CreateSentimentAssoc('AFFIN-111.txt', 'word_lower', 'score');
7 W = A(:,Row(S)); %Match sentiment words
8 Anew = dblLogi(W)*str2num(S); %Summation of scores
9 Aout = A + Anew %Update final assoc

10 end

Figure C-3: Determine Sentiment Score for Twitter Data in Associative Array
Function call in MATLAB that appends a sentiment score column to an Associative Array
containing Twitter data.
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Figure C-4: Matrix Representation of Sentiment Example
Sentiment analysis for Twitter example can be viewed in matrix form as the formation of a
sentiment dictionary Associative Array (S) and the subset of corresponding tweets that
match to the words found in the sentiment dictionary (W). The formation of the new
Associative Array (A) with a sentiment score is a simple matrix multiplication between W
and S.
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